Soient \(A,B\in \Bbb K[X]\) tels que \(B\neq 0\). Alors il existe un unique couple \((Q,R)\) de polynomes de \(\Bbb K[X]\) tel que :
$$A=BQ+R\quad \text{et} \quad \deg(R)\lt \deg(B)$$
\(A\): Dividende
\(B\): Diviseur
\(Q\): Quotient
\(R\): Reste
\(\to\) Demonstration: Pasted image 20220324145742.png